11

Representative agent models in
cashless economies

Macroeconomic models have traditionally been constructed from aggre-
gate demand and supply relationships. These relationships are in turn
justified by ‘micro-foundations’: that is to say, it is shown that people
or firms (agents) maximizing their utility or expected utility would on
average behave according to these relationships. To obtain aggregate
from individual behaviour, assumptions have been made about the dis-
tribution of preferences and technological idiosyncracies: often, appeal
can be made to the central limit theorem, which says that the mean
of N independent random variables has a normal distribution, with a
standard deviation equal to that of the component variables divided by
VN.

Nevertheless, the parameters of these relationships are only loosely
tied to the parameters of the preferences and technology of individual
agents. We saw this earlier when discussing Lucas’ critique (Lucas, 1976)
of econometric models: certain of the model’s parameters will shift under
changes of policy regime or other exogenous variable processes. Yet we
would like to have models which can be used to evaluate the effects of
just such changes. This argues the need for models whose parameters
are solely those of preferences and technology, so-called ‘deep structure’.

In response to this need, a variety of models have been produced
which make dramatically simple assumptions about preferences and tech-
nology, in order to make a complete treatment practicable. Often tech-
nology is reduced to stochastic per capita endowments of a single con-
sumption good and consumers are treated as identical representative
agents.

These models are obviously no use for traditional forecasting and pol-
icy analysis where we try to predict and control particular sequences of
events. But this is not the use for which they are intended. Rather it is
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to model an economy in the sense of mimicking and so understanding its
(average) time-series properties when shocked; from a policy viewpoint,
this should guide us towards policies which improve those properties.
This is a long term perspective. With it tends to go the view that
economists and policy makers should only be concerned with these av-
erage properties over the long term and not with short term sequences
of events.

There are horses for courses. In practice, whether they ought to
be or not, economists are called upon to help in both the short- and
the long-term aspects of problems. Provided they are honest about the
shortcomings of the tools they use in both contexts, we can see no ob-
jection to them earning their living doing both. For this reason, we have
presented the more traditional models already and now proceed to give
an account of these deep structure models. Inevitably, it is too short to
be more than an introduction (see Sargent, 1987, for a fuller treatment).

THE BASIC STRUCTURE OF A REPRESENTATIVE
AGENT MODEL

In these models the representative household maximizes expected utility
subject to its budget constraint; the government spends, levies taxes and
prints money subject to its budget constraint; and markets clear, impos-
ing general equilibrium. From this structure it is possible to derive rela-
tionships between the stochastic shocks and macroeconomic outcomes,
such as consumption, interest rates and prices.

Consumer Maximization

Take first the household’s decision. In a non-stochastic world it would
typically be assumed to maximize a time-additive utility function:

U :Z Blu(cy) (1)
t=0

¢ is consumption, and u is a well-behaved utility function with posi-
tive and diminishing marginal utility of consumption. Let its budget
constraint be:

At+1 = Rt(At + Yt — Ct) (2)

where A; is wealth at the beginning of period ¢, R; is the interest rate
(gross, inclusive of capital repayment), and y; is income. Ag and ¥y, are
given.
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Using the Lagrangean method, we can write the maximand as:
L = u(co) + Bulcr) + B2ulca) + ... + po[A1 — Ro(Ao + yo — co)]
+ pi[A2 = Ri(Ar + g1 — )l + oAz — Ro(Az + 92 — 1) + ... (3)

yielding the first-order conditions with respect to the consumer’s choice
variables ¢y, ci,...; A1, Ao, ... as:

5L oL
0= o W' (co) + poRo; 0= oA, Ho~ 1B

oL oL
O:E:ﬂul(cl)-Hth; 0:6_,42 = iy — Ry (4)

where v/ :‘;—“ .
C

Equation (4) yields a string of relationships between the marginal
utility of consumption in one period and the next:

u'(ct) = BRy/ (1) (5)

The household equates its marginal rate of transformation

u'(¢r) /B (ciq1)

with the gross rate of interest, a result illustrated in figure 11.1.

As figure 11.1 and equation (5) suggest, one can split up the con-
sumer’s problem into a sequence of two-period decisions. Given (A;+y;),
he decides ¢,y relative to ¢;: that is, he can either decide ¢;41 if he has
already decided on ¢; or ¢; if he must consume c¢;41. This splitting up
of the decision problem is known as dynamic programming. In dynamic
programming, each period’s consumption is first solved given the last pe-
riod’s consumption, wealth and income: finally the initial consumption
level is set so that all assets are ultimately consumed.

For many purposes we shall only need to consider the first stage
of the decision process. Occasionally, dynamic programming solutions
are presented backwards from the future (that is, consumption in one
period is solved given consumption in the next period): this method
is convenient if there is some fixed terminal point from which one can
work back (at which for example the consumer dies, leaving a fixed or
no bequest). But it is obviously only a presentational matter whether
one period’s consumption is seen as depending on last period’s or next
period’s.

The consumer decides what to do one period at a time, and in princi-
ple he can recompute his decision for the next period when it comes: he
decides ¢ this period (with a plan for ¢1, ca,...), next period he decides
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A
Ct+1

RW;i
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Figure 11.1: Intertemporal consumer choice

c¢1 (given co, then in the past, and with a plan for ¢o, c3,...). Of course
in this problem with no stochastic shocks he will always stick to his orig-
inal plan (this is not to be confused with the time inconsistency of policy
makers who can influence other people’s decisions and then recompute:
our consumer only affects himself). He might as well decide at the start
on his consumption plan and just carry it out without further thought.

We now turn to a stochastic environment, where in each period a par-
ticular shock is realized. The consumer will have decided on consumption
in the previous period based on his expectation across all possible shocks.
He will also have a plan for his consumption in future periods; this will
be a contingency plan, in which his consumption will depend on which
shocks occur. Since he does not actually have to decide irrevocably on
future consumption until the period involved, this contingency approach
is the optimal one: he maintains his flexibility until the last possible
moment. Then as the shocks are realized, he picks the relevant branch
of his contingency plan. Figure 11.2 illustrates.

We can think of this equivalently as the consumer either recomputing
his best expected plan each period or as computing at the start a total
contingency plan and carrying it out as the shocks are realized: the point
is that the consumer is making use of his potential flexibility in the face
of shocks by deferring decisions on actual consumption until he has to
take them.

The consumer is assumed to maximize expected utility in this envi-
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c A

>
period (t)

Figure 11.2: Contingency plan for consumption, with the shock each period
taking two values (a, b)

ronment, or

Up = Ep Z Bu(cr)

t=0

subject to A;y1 = Ri(A¢ + yr — ¢¢), where Ry = R(1 + ¢;) for example
but y; is a known series. We can now use the principle of dynamic
programming and take each period’s decision separately.

We can write Uy, substituting ¢; out from the constraints, as:

Uo = u(co) + EoBu(Ro[Ao — co] +y1 — Ao/ R1) + Eofu(cs) + ... (6)

Maximizing this with respect to ¢y (A given) gives:

oU,
0= == = u/(co) + Eofu/ (1) (~ Ro)
€o
or
U (co) = EpBRou/(c1) (7)
Analogously at ¢ = 1, the consumer maximises U; (A; given) to
obtain:

u'(cl) = ElﬂRlul(Cg) (8)
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and in general:

u'(cyy = By SR (crqn) (9)

which is the expected analogue of (5). By the law of iterated expectations
it follows that:

Eou/(ct) = ﬂE@Rtu’(ct_H) (10)

We can reach this general result more compactly by using expected
Lagrangeans, taking the expectations operator through the Lagrangean
multipliers.

Let the consumer be faced with a given realization A;; then he can
choose ¢;, ¢i+1, Apy1 to maximise (at t) Uy subject to the constraint, or
the expected Lagrangean,

L=U+ E{p(Arp1 — Re[As +ye — ) +
es1(Arro— Repa[Avpr + ye—cen]) +..F - (11)

oL

0= == = B(e) + Bu B (12)
Ct
6L
- _EBu-E 1
0 5 thy — Eipry g Rt (13)
5L ,
=5 = Eif v (cii1) + Erpry i Ria (14)
Ci+1

Equation (9) follows by substitution.

GENERAL EQUILIBRIUM

Equation (9) can be turned into a pricing formula for an asset. Suppose

the asset yields an uncertain dividend, d;41, and has a current price, p;,

so that

_ bt+1 +dit1
bt

Ry (15)
Then

+d
() = Byp(BEL oL ) ()
t
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or
Dt = iEtul(ct 1P+ + diyr) (16)
u’(ct) +1)

Since all consumers are identical, the only way this asset will be held
(by anyone and everyone) is for (15) to hold.

One way to create a simple economy with an asset market is to follow
Lucas’ tree model (Lucas, 1978). Let the only asset be an identical
tree, one initially at ¢ belonging to each consumer, who has no other
source of income. Let each tree produce non-storable fruit, an all-purpose
consumption good, in the quantity d;. Let the number of trees belonging
to each consumer be Sy; the supply of trees per consumer is S = 1.

Fruit can be exchanged for trees at the price p; (units of fruit per
tree). But Walras’ Law implies that if the fruit market is in excess
demand, the tree market is in excess supply. Therefore market clearing
across the whole economy (trees and fruit) implies that

¢t = dy (17)
Equations (15) and (16) therefore constitute our model of the econ-
omy, yielding the compact form:
1
pe = 5mEtu/(dt+1)(pt+1 +dy1) (18)

Substituting successively for Eipii1, Fipiry2, ... and using the law of
iterated expectations (ErEyy; = Et), yields:

B’ (di+1) 2 W (deg1)u/ (dey2) ]
=F |————di 1+ 0 —————dsio + ...
Dt ) e B EATIC I R
- W (diy )
=B P e 09

Depending on the form of the utility function, one can solve for p; as
a function of the current and expected d. One convenient case is where

u(cy) = Ince so that u'(cyy = é, in which case
— E S JJ, — g
pe = tZﬂdt—l_ﬂdt (20)
j=1

In this case the asset price varies with whatever stochastic process drives
the harvest of fruit.
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THE GOVERNMENT BUDGET CONSTRAINT

In this general equilibrium framework with no money, let us introduce a
government issuing debt, bonds, each of which pays next period one unit
of the fruit, regardless; b;11 is the number of such bonds outstanding at
t (by the number issued in ¢ — 1). Its budget constraint will be

gt — Ti + by = b1/ Ry (21)

where g; = government spending per capita, Ty = taxes per capita (an
equal poll tax), R; = the one-period-ahead rate of return on debt .
For this debt to be held, it must be as with trees that

U (¢;) = BERyu' (cra1) (22)

Since Ry is certain, this implies

R\ = ﬁEtZIEerl) (23)
Now market clearing of the fruit market implies:
et + gt =dy (24)
The consumer’s budget constraint is
dSy — ¢ — Ty + by +peSy = l}i——;l +pt521+1 (25)

where S; is his existing holding of trees and SfH is his desired holding
of trees for next period.

Using the two budget constraints, (20) and (24), and fruit market
clearing, (23), Walras’ Law reappears for debt and trees together:

bei1 b
% +piSy = %tl +pt5g+1 (26)

Since debt and trees are perfect substitutes at the R; given by (22)
and p; given by (18), any excess supply of debt (excess demand for trees)
is eliminated by an infinitesimal movement in either p; or R;.

The Ricardian equivalence result immediately follows in this model,
that taxes are irrelevant, to consumption from (23), and to interest rates
and asset prices:

_ B (dir1 — grv1)
1 t t+1 t+1

= 2
Rt 6 U,(dt — gt) ( 7)
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B (diyj — ge45)d
P Zﬁj ! t” ;j)j) L (28)

Only the path of GDP and government spending matters. This is be-
cause households are infinitely-lived so that the pattern of (lump-sum)
taxes does not affect their life-time consumption possibilities or perma-
nent income.

THE PRICING OF CONTINGENT CLAIMS

We saw earlier (equation 15) that the price of an asset paying a stochastic
dividend, d;, was:

o W) (e + dig)
= OE; () (29)

The price and the dividend is in units of the consumption good,
‘fruit’ or whatever. Now consider a claim which pays out one unit of the
consumption good in t 4+ 1 when the state of the economy, some vector
X411, has a value between xy and x1. By extension of (28) its value will
be:

Gtlro <@ < a1 = %/ 1 ' (cig1 [T ]) f(@igr, m)dar  (30)

f(zry1, x¢) is the probability density function over x:11 (given that x;
has occurred); integrating the area under this function gives the proba-
bility of z;41 lying in the range z¢ to z1. Equation (29) says that the
price of a contingent claim is the marginal utility of one unit next period,
relative to this period’s marginal utility if x;y1 lies in the range, times
the probability of its lying in that range.

Equation (29) allows any contingent claim to be priced. One simply
specifies the range of contingency, evaluates the marginal utility of con-
sumption in that contingency, multiplies by the pay-off in units of the
consumption good, and weights each part of the range by its probability.
Equation (29) can also be derived directly from the consumer’s maxi-
mum problem subject to a budget constraint containing the contingent
claim: this is left as an exercise for the interested reader.

Contingent claims which nest other contingent claims within them
(for example, a claim on two-period ahead consumption given z; s and
x¢) must be consistent with the claims nested within them; otherwise
arbitrage opportunities occur. Hence, for example, a claim on consump-
tion two periods ahead must have the same price today as the current
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price of a one-period ahead claim on consumption two periods ahead
times the current price of a claim on consumption one-period ahead.
This is exactly analogous to the arbitraging of interest rates of n-period
ahead maturity with the n one-period interest rates for the intervening
periods.

GOVERNMENT BONDS AS NET WEALTH: MODELS
WITH INTERTEMPORAL AND GEOGRAPHIC CON-
STRAINTS

We saw above that, subject to the solvency condition, a government
could borrow as much or as little as it liked with no effect on the economy,
assuming its taxes were lump sum (distortionary taxes are another mat-
ter as we showed in chapter 7, where we discussed the Lucas-Stokey op-
timal tax-smoothing proposition) — this is Ricardian equivalence. Yet a
number of authors have been impressed with the role that a government-
issued liability could perform by intermediating between people who may
not be willing to lend directly to each other for some reason: they will
still be willing to lend to a government which in turn may transfer, or
lend, to others. Of course, such government bonds will generally affect
economic outcomes and be net wealth.

Two main sets of reasons have been advanced why people would be
unwilling to lend to some other people: one is death (the young will not
lend to the old because the old have no incentive to pay it back after
death), the other is geographic isolation (members of one tribe will not
lend to members of another if they cannot see them again to reclaim the
debt).

OVERLAPPING GENERATIONS MODELS

Samuelson’s overlapping generations model, used (see chapter 7) by
Barro (1974) with a bequest motive in order to re-establish Ricardian
equivalence, has been used extensively by Neil Wallace and his colleagues
under the assumption of inter-generational indifference (no bequests) to
establish a role for government liabilities.

Suppose all generations are made up of N identical agents, whose
income stream in perishable consumption units is y — € and ¢ in their
youth and old age respectively: 0 < ¢ < y/2 so that they obtain more
income when young than old. Consumption when young and old is
respectively ¢l (t) and ¢} (t+1) for the hth agent of generation ¢. Assume
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there is no investment opportunity other than a loan market, but that
the government has no borrowing, tax or spending programme initially.
Then we can easily show that there will be no lending by agents when
young, I7, at all: the old will not lend (because they will not be alive to
be paid back) or borrow (because they cannot pay back when dead).
Assume the consumer maximizes a logarithmic utility function

U (et (8), ¢ (t+ 1)) = Inef (¢) + e (£ + 1) (31)
subject to
y—e—ci(t) = I
e+[l4r@)lh = +1) (32)

where 7(t) is the net rate of interest, to be determined by the clearing
of the loan market (this by Walras’ Law also clears the goods market).
His Lagrangean is therefore:
J=Incl(t) +Inch(t + 1)+ ph )y — e — P (t) — 17
+pupt+Dfe+ (A +r@) —c(t+1)} (33)

The first-order conditions yield:

h
h cl(t+1)
— Nt 4
The consumer’s life-time constraint is:
h
A c(t+1) €
t —_— =y — _— 35
ct()+1+r(t) VCET T (35)
so that
h y—¢ £
t) = 36
)= ) (36)
and
- 2
h_y—c__¢f
¢ 2 1+7(t) (87)

Market-clearing requires that > {% = 0 and hence [!'=0 since all
h
agents are identical. Consequently

1+7r(t) = <1 (38)

y—e€

Negative interest rates are required to induce people to consume all
of their youthful income, since no one is available to make a loan to.
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Now let the government borrow (a one-period loan) to spend in the
first period only, the sum G(1) = N[ —¢]; it pays off its debt from taxes
(7) on the young in period T'. Its budget constraint is:

Gt)+ L) =Y rig () + Y (B + [L+r(t - DILIE-1) (39)

where L9(t) is the loan it takes out in ¢ and it starts with L9(0) = 0. In
this case, this implies

G(1) = —LY1)=N [% - g] :
LIt) = [L+r{t—-DL(t—1){T>t>2}
and
ZTT 14 r(T — 1D]LI(T — 1), setting LY(T) =0  (40)

The loan market equilibrium in period 1 is now:

- &2
2 1+4r(1)

0=1r01 h=-N[Z-c]+n|? 11

(1) + th i S e+ (41)
which is only satisfied if (1) = 0. This government intervention has
therefore raised interest rates by siphoning off the young’s expendi-
ture into loans. Subsequently, the government debt remains constant:
L9(2) = L9(1), which implies that r(2) = 0; and so on until 7', when
L9(T) = 0 but the tax bill reduces the income of the young, and 0 =
;lf gives 1 +7(T) = ;5. Thereafter of course the equilibrium gives

r(t) = = (t > T) as in (37).

The implications for consumption patterns of this intervention are
beneficial to every generation except the Tth and beyond. Generations
less than T" now consume:

gty =2 =chit+1) (42)

whereas previously they consumed y — e and ¢ respectively in ¢t and ¢+ 1.
Figure 11.3 illustrates the improvement in their welfare. The 45° line yy
shows each generation’s consumption possibilities when young and old,
provided there is some mechanism (like the government loan sequence
above) to ensure that when it transfers resources to the old, the same
will be done by the next generation to it. Clearly the optimal point is
along the 45° line from the origin.

The T'th generation is worse off, as its consumption pattern becomes
£ in youth (because of the tax bill) and in old age. The following gen-
erations are of course unaffected.
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Figure 11.3: The welfare effect of consumption smoothing on the OLG model

This would therefore appear not to be a Pareto-improving policy
across all generations. However, in an economy with an infinite life, it can
be made so by deferring repayment of the government debt indefinitely:
the T'th generation then never arrives. In this case the government bond
issue is a source of net wealth to the country, even if the initial output
diverted to government spending, G(1), is thrown away!

The gain, to repeat, lies in the ability of government bonds to ef-
fect loans from the young generation to the old. The young invest in
government debt, the old pay it off; but they do not have to deal with
each other directly. Notice that this government loan sequence effects
exactly the same as a pay-as-you-go pension scheme, taxing the young
by y—e—4 and giving this as a pension to the old; so here a loan market
in government debt is all that is needed to enable people to make their
own pension provision efficiently.

GEOGRAPHY: THE BEWLEY-TOWNSEND
MODEL

A similar point about the usefulness of government debt can be made
about two communities, each with uneven income patterns over time,
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but which are separated in space rather than by time as the above gen-
erations are. Let community A people have an income stream in per-
ishable consumption units of y — e and e (a variable harvest say) while
community B people have the stream ¢ and y — ¢, in even and odd pe-
riods respectively. All A and B people share identical preferences. But
the A people will not lend to the B people, or vice versa, because the
two groups rarely meet (they may trade but one group having traded,
their next trading session is with another group); Bewley (1980) and
Townsend (1980) suggest a ‘turnpike’ with A and B people passing each
other in opposite directions, meeting once but never again. The A and
B people both live for T' 4+ 1 periods (where we can allow T — 00);
assume there are N each. It is obvious that A people will consume in
even and odd periods y — € and € respectively, B people € and y — ¢;
their consumption pattern will be as uneven as their income pattern. As
with our overlapping generations model, a government which borrows
can smooth their consumption.
Write its budget constraint per capita as:

g+l =m1+Q+rt—-1))], (T>t>0, given?; =0) (43)

The government levies the same tax, 7; on everyone; g; and [ are
per capita spending and one-period loans.
Each hth consumer maximizes

T
> Bulet)
t=0
subject to
DA<yt +Q+rt—1), (T>t>0
given I, = 0).
The market equilibrium in loans is:
1 1
2 2

Let us for maximum simplicity assume the government merely acts
as a lender and borrower, and does not use its tax or spending powers.
Then I = 0 (net) for all ¢ and it follows from market equilibrium that

P +zP+1y=0 (44)

i +ef =y (45)
The consumer’s optimum in the usual way yields:
u'(c})

ul(chl)

=B +r) (46)



286 Extending and Deepening the Models

Hence since from (44) c? =y — ¢f*
Wel) _ wly—cd)
= =B +r() (47)
w(cfyy)  w(y—cfyy)

It follows that ¢! = ¢f} jand 1+ r(t) = %: full consumption smooth-
ing with the rate of interest equal to the rate of time preference. Imposing
the terminal condition that all loans must be paid off (so that the present
values of consumption and income are equal), and letting T' — oo, yields

A
c —e(1 -
1-p 1-p

This is the result of equating the present values of A’s constant infi-
nite consumption stream and of A’s alternating infinite income stream,
starting y — . Hence

A_y—e(d-0)
A= =
1+
and
B — By+e( -0
1+

This outcome is illustrated in figure 11.4, a box diagram with A’s
preferences running from the bottom left-hand corner and B’s from the
top right. Because of positive time preference, their indifference curves
have a slope of —f along the 45° line between these two corners (compare
Figure 11.1 where the slope is —1); A and B agents being identical, their
contract curve lies along this 45° line. The autarchic point is at a; the
optimum at b is where the budget line going through a with the slope
—(1+47)~t = —f cuts the contract curve.

The point about the role of public debt here is that it enables trade
(‘geographic smoothing’). With each community made up of infinitely-
lived households, then government borrowing (and its tax pattern over
time) will make no difference to the pattern of consumption and asset
prices — that is, there is Ricardian equivalence. Government debt here
creates net wealth only to the extent that it facilitates trade: it is act-
ing like the capital account of the balance of payments. However, if
the capital account is already operating, this effect of government debt
disappears.

(49)

THE REAL BUSINESS CYCLE MODEL

In chapter 3 we referred to the research agenda of ‘real business cycles’
(RBC), in which the shocks driving the business cycle are identified as
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Figure 11.4: The Bewley—Townsend model

coming from productivity and tastes rather than from monetary policy;
the reason being that rational agents with access to good up-to-date
information will not either sign nominal contracts or suffer information
lags about prices sufficient to generate a forward-sloping AS curve — in
effect the RBC AS curve is vertical. Even though nowadays we would
generally ‘augment’ such a model with nominal rigidities that would
give monetary shocks a role, this uncompromising agenda has produced a
large volume of work and insights into the economy’s behaviour following
Kydland and Prescott (1982), the prime instigators: a large selection is
provided by Hartley et al. (1998).

In early post-war macroeconomic thought productivity growth was
treated as a smooth and predictable ‘deterministic trend’, that is a (nor-
mally loglinear) time trend; so were changes in tastes that for exam-
ple through changing labour supply affected output growth. Thus the
economy could be thought of as a time trend of ‘potential output’ with
business cycle movements around it:

yi =+ (50)
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The movements around it were seen as due to demand shocks. The
RBC model denies this; shocks to potential output are random walks
with drift (with possibly additional serial correlation which we ignore
for simplicity)

Ay; =~ +mn, (51)

Here « is the deterministic trend (the drift), but the key point is that
potential output is also constantly being shocked upwards or downwards
by permanent changes in tastes (leisure preference) and productivity (for
example upwards by innovation, downwards by a new technology that
outdates existing capital). If we integrate (50), we obtain:

0
vi=t U+ > M (52)

1=t—1

which shows that potential output reflects the cumulant of past shocks
to technology and tastes (dominated probably by productivity shocks to
the production function).

When one thinks about the matter, it is clear that this rather than
(49) must be correct, since technological change is by definition unpre-
dictable and yet once it has occurred its effect is permanent and (unless
and until some new change) irreversible. The seminal piece of empirical
work that showed (50) fitted the facts better than (49) was Nelson and
Plosser (1982).

Given that the progress of potential output is random, this source of
shocks can also disturb the economy in the short run, with the assistance
of propagation mechanisms. First, investment in the new technology will
be spurred by its arrival; the additional capital will take time to build,
generating a delayed stimulus to demand. Second, consumer-workers will
adjust their consumption and work-plans in response to the new income
prospect and real interest movements. The business cycle results from
the interplay of these reactions within a market-clearing environment
(that is, one where agents are free to make all mutually-beneficial trades).

Plainly there is nothing to stop us adding nominal rigidities to this
model; but RBC theorists reject these additions as theoretically ill-
founded since people will not wish to subject themselves to additional
(money) shocks when they can set prices in relative terms, either by re-
acting promptly to any changes in money prices or by indexation. RBC
modellers claim their models can capture the properties of the business
cycle without these additions. A large empirical literature has grown up
around these claims, using techniques that are generally different from
classical regression: in particular RBC modellers reject forecasting as a
valid test of a model. A model should be a mock-up of the economy,
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to provide insight into how the economy works; thus its ‘cyclical prop-
erties’ should be like those of the economy. This does not imply one
can forecast the economy well from a given initial situation, because one
cannot forecast the shocks that will occur. RBC modellers favour com-
paring the unconditional moments of the model’s simulations with those
of the economy: especially the second moments, the variances and co-
variances of key variables like output, employment, interest rates, wages
and prices.

We now write down a simple RBC specification. So far our represen-
tative agent models have taken the capital stock (e.g. ‘trees’) as given:
income has come as ‘endowments’ or ‘fruit’. Nor have we included labour
supply. Essentially we have explored models designed to shed light on
particular issues — such as asset pricing and the wealth effects of gov-
ernment borrowing; these models have had both infinitely-lived people,
equivalent (as in Barro, 1974) to overlapping generations of mortals who
care about their predecessors or their successors or both, and overlap-
ping generations who did not care either way. RBC models draw on
both; but the main group assume the former.

So we begin with with a representative household maximizing ex-
pected utility from consumption, ¢;, and leisure, 1 — L;, at time 0:

B Z/Bt {c] (as]1 Ift/]))l—v}l—p (53)

where this utility function, usually chosen, is of the Constant Relative
Risk Aversion (CRRA) type, with a Cobb-Douglas relation between con-
sumption and leisure (7 is the share of market activity in the total of
consumption plus leisure value and a; is a (leisure) preference shock).
All units in the model are per head of population.

The representative firm, owned by the representative household, has
a Cobb-Douglas production function with a time-to-build lag between
the decision to invest in a capital project and its appearance as capital.
The household chooses to consume or to invest in either real bonds or
the firm’s capital projects. Hence its budget constraint is

oI +bp=AKYLIT =T+ by (14 74_1) (54)
where
4
I = Z kist_iya (55)
i=1

Ki=(1—-06)Ki1+54 (56)
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We have assumed that projects take four periods to complete. Here
s¢—4 for example is the project started at ¢ — 4, which is then completed
in four parts, k1 — k4, each of these being a proportion. Thus s;_4 is
completed by ¢, when it appears in the capital stock, K;; besides this
addition there is depreciation 6. Iy, investment, is the sum of the spend-
ing on projects in train: kys;, kssi—1, k2St—2, k1Si—3. It is assumed that
a project once started is then taken through to completion: naturally
enough because of the large sunk cost of a completed section.

Finally, we have a government which spends on necessary public
goods and raises taxes:

by =Gy — T+ b1 (1+1ri_q) (57)
Market-clearing in goods is:
Ct =+ It —|— Gt = AthaL%_a (58)

This model is highly nonlinear and cannot be solved analytically,
except via a (perhaps unacceptably inaccurate) linear approximation.
To illustrate the ideas of such a model we use a simpler set-up in which
capital is continuously variable with a one-period lag of installation. This
changes the consumer’s budget constraint to:

i+ K —(1=8K,_1+b,=AK (L7 =T, +b,_1(1+7_1) (59)

We will also simplify by assuming that households’ decision to sup-
ply labour is predetermined (perhaps by some decision made a long time
before on patterns of education and work); hence L; itself becomes the
preference shock and we drop a;. The Lagrangean the household maxi-
mizes at time 0 now becomes:

— i {c]/ (1= Ly)t}r
AZEOZBt{t( 1_t)p ) +A{e+ K — (1 -0)K;
t=0

+ b — A KL+ T — b (14+71)} (60)
The first-order conditions are:

0= Eo{Bc] (1 — L))" ] Py + M} (61)
0= E(){)\t — /\t+1(1 =+ ’I"t)} (62)

0=Eo{h — (1 = N1 — A1 A Lok, 1Y) (63)

These imply the decision for ¢ = 0 variables is:

_1
Cco = E()Cl,B(l =+ 7‘0)m {
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0= Eo(Oé)\lAl)ﬁIq
{Eo\i(ro + 8)}T=

where

vB(1 — Ll)—p(l—v)

A= 0=0)

Taking logs of this we obtain:

1 1
In Ko = In Eg(a\j A;)T= Ly — ——In(rg +6) — ———InEo)i (66)

-« -«

Let us now assume that Aln A, = n, and Aln L, = ¢; where both
these errors are normal and iid. We can now make use of the fact that
when In Z; is normally distributed with an innovation x; then approxi-
mately

InE; 17 = Ey—11n Z; + 0.5var(z;) (67)
Hence
1 1 —
In Ky = InAg +InLg — IH(TO + 5) + Ky (68)
11—« 1—«
where
— 1 1 .
Ky=1—+ 0.5var{(aA;Ay) = L1} — ——var(\1)

is a constant which depends on the variances of the two errors and their
covariances with .

We can generalise these conditions by letting 0 = ¢ (in other words,
the period 0 we have been planning from can be any period, t; the plan
will then treat 0 as ¢, 1 as t+ 1 and so on). Hence we can generalise (67)
as:

1 1 —
InK; = 1_alnAt+lnLt—1_aln(rt+5)—|—K0 (69)
It follows from the production function that:

@ InA; 1 +alnl; ;

nY;=InA;+(1—-a)InL; + T
-«
o

g In(ry_q +6) +aKy (70)

To solve for interest rates we use the first-order condition for con-
sumption (63) (letting 0 = ¢, 1 = ¢ + 1) with (68) for the capital stock
and (69) for output, the exogenous process for government spending and
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substitute them all into the market-clearing equation (57). This is a
nonlinear expression in which the expected path of interest rates as seen
from period ¢ must ensure that markets clear given public spending plans
while consumption is intertemporally smoothed via investment and bond
holding. This path (most accurately found via a computer algorithm)
will be approximately a saddlepath like our solutions in chapter 2 with
forward-looking expectations; plainly there is scope here as there for long
drawn-out dynamics from the interaction of adjustment and rational ex-
pectations. It is possible to make some rough linear approximations but
we do not pursue that here — enough has been done to show that one
can obtain solutions for output and the other key macro variables ex-
hibiting both variability and persistence that in principle at least could
mimic a real economy — as explored in the empirical literature.

CONCLUSIONS

In this chapter we have examined the behaviour of representative agent
models in a cashless society. We have seen that where loan and other
contingent claim markets are complete, these claims are priced so that
the expected future discounted marginal utility of consumption equals
its current marginal utility. Since all agents are identical, consumption
must equal (perishable) output in every period. If a government enters
the market, then Ricardian equivalence holds: only government spending
affects consumption and asset yields. Government debt is irrelevant to
real outcomes.

Government debt becomes relevant if some constraint on market com-
pleteness prevents optimal loan trades being made between agents. Two
such constraints were considered: overlapping generations without a be-
quest motive where the young will not lend to the old; and communities
which are spatially separated so that loans cannot be reliably recov-
ered. In both cases a government which borrows to finance a deficit can
achieve intermediation between surplus and deficit agents. In the first
case, Ricardian equivalence is eliminated; in the second case Ricardian
equivalence still holds for the pattern of government borrowing over time
but government willingness to borrow and lend enables trade to occur, in
effect proxying the capital account of the balance of payments (chapter
13); of course if capital transactions are already possible, this role for
government debt evaporates.

We ended the chapter by setting up a Real Business Cycle model
whose aim is to mimic the economy’s cyclical properties without appeal-
ing to anything other than maximizing behaviour by entirely rational
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and well-informed agents — it is assumed that they either are well-
informed about general price movements or can easily index their own
wages and prices to general prices. In this model government policy only
matters for the business cycle to the extent that government spending
fluctuates: there is Ricardian equivalence so that tax rates are irrelevant
and monetary policy is entirely ineffective. The literature exploring this
model empirically has not surprisingly generated considerable contro-
versy which continues on many fronts.
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APPENDIX 11A THE TECHNIQUE OF DYNAMIC
PROGRAMMING

Suppose we write a maximization problem at time ¢ = 0 as follows:
Maximize at t = 0

T

M = Zﬁtr(fﬂta w) + B R(wria) (1)
0

where (zo is given)
Tep1 = g(Te, ue) (2)

The r function is the value or return produced in period ¢; R is the
terminal r function, the value in the last period, which the agent is as-
sumed to be unable to affect with his instrument from 7"+ 1 onwards.
x; is the state (e.g. of the economy) variable; it may be a vector of
variables but we will treat it for simplicity as a single variable. u; is the
variable to be used as the instrument of maximization. The g function
is the model of the economy relating the state at ¢ + 1 to the previous
state and the instrument. There is no uncertainty.

The dynamic programming method is to maximize M in two-period
segments, taking the results from other periods as being already max-
imized. It thus breaks down the problem into 7" problems. For conve-
nience, start with segment T
Maximize

BT r(ar, ur) + BR(z741)] (3)

This takes xr as given (in effect by separate maximization of pre-
vious segments) and, since there is no upr41 by assumption, it must be
maximized by choice of up. This gives rise to the following first-order
condition:

87‘(:L‘T7’LLT) + ﬁaRT+1 8g(:vT, uT)

0=
Our 0xT11 Our

(4)

Since r, g and zp11 are all functions of xp and wup, this gives us a
maximizing solution for ur in terms of zr:

ur = hr(xr) (5)

Denote the maximizing value of x4 correspondingly Zpyi. Then
our T segment becomes:

[r(xr,ur) + BR(Z1+1)] = Vr(or) (6)
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V() is the ‘value function’ as seen at time T7; by this is meant the
function which, given xr, extracts the most value from subsequent uses
of the instrument (i.e. here ur).

We must now repeat the operation for the T — 1 segment:

[r(zr—1,ur-1) + BVr(27)] (7)

where Vi (z7) is the present value at T of the last, T, segment since this
part is what needs to be maximised at T'— 1, having had its maximizing
ur chosen (and so has been reduced, after solving for ur in terms of x,
to an expression solely in x7). Thus we maximise at T'— 1 an expression
that already allows for the effect of future maximization at 1. Again we
obtain the first-order condition:

_ Or(xr_1ur_1) OV Og(xp—1,ur_1)

0=

+ 05

(8)

Our_q Ox Our_1
This again solves for:
ur—1 = hr_1(rr-1) 9)
Again we can rewrite the T'— 1 segment as:
[r(@r—1,ur—1) + BVr(Zr)] = Vr—1(27-1) (10)

Vr—1(zr—1) analogously is the value function seen at T — 1; plainly it
includes the value function at T within it, discounted by 8. We may
continue backwards along the time segments obtaining:

[r(xp_2,Ur—2) + BVr_1(Zr—1)] = Vr—2(x7_2)
[r(zr—3,Ur—3) + BVr_2(ZTr—2)] = Vr_3(z7—3) (71)

[r(0,1o) + BV1(Z1)] = Vo (20) (11)

Vo(xo) is the maximised value of M, that is, when the whole path of
Z1, T2, , Tr4+1 has been maximized by the path of ug, uq, .., ur.

This segment-by-segment technique is highly convenient for thinking
about uncertainty. It is usual to assume that at each period the agent
can change his current and future instrument settings. If we think of
him maximizing the expected value of (1), then he will at T choose a tir
that maximizes the expected value of (4), and (6) will be the discounted
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value function, as expected at T'; this will be his contingency plan for
T. Vo(zo) will then be the expected value function at ¢ = 0; and within
it will be nested expectations at t =1, t =2, ..., t =T. We can then
use the law of iterated expectations to convert the expression into an
expected value at ¢t = 0.

Reverting to the case of no uncertainty, we can see that it implies in
(9) an optimising rule relating the instrument to the state. Plainly if we
can find this rule, then we can substitute it into M in (1) and so find the
value function, the maximum value our agent can obtain. Such a rule,
which in general will not be time-invariant, would be:

ur = hr(or) (12)

In the case of uncertainty, this rule is to be found from the expected
first-order condition and it becomes a rule for a contingency plan relating
the planned instrument to whatever the state then turns out to be: thus
U becomes the contingent plan value of up. If we take expectations of
(12), it will give the expected instrument as a function of the expected
state.

In practice, with models of any complexity there are no available
analytical techniques for finding the contingent-plan rule or the value
function: the problem has to be solved numerically via the computer.
In this respect, the situation is worse than for the linear rational ex-
pectations models we mainly considered in chapters 1-7; for these the
analytic techniques exist and can be written down, even if in practice
they too are usually found by the computer. For dynamic programming
problems the form of the contingent rule has to be guessed in the first
place; to minimize complexity, set-ups are often converted into linear
models with quadratic maximands, for which the form of the rule is
known. However, most of the representative agent models being used
in modern research are highly non-linear; so such a conversion carries a
cost in brutal approximation.

To gain an understanding of solution paths the computer will gener-
ate, it is helpful to work through a simple set-up.

Let a household maximize

T
> B'ng (13)
t=0

subject to
At+1 = Rt(At - Ct) (14)

Ary1 =0;Ap, R((t =0, 1,..., T) are given. Ry is the gross real
rate of interest.
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Here the household has a finite life and will leave no bequest. We keep
its problem to the simple one of deciding how to spend an initial stock
of wealth, Ay, through its lifetime. In terms of our previous notation, we
define the state as A; and the instrument, u;, as the amount of wealth
unconsumed in period ¢, or ‘savings’ for short: u; = A; — ¢;. Thus
At+1 = Rtut.

Starting with the last period, T, plainly there will be no savings:

0= Ary1 = Ry(ur) so that

cr = AT (15)

(a corner solution where all remaining assets are consumed).
The value function at T is therefore:

VT(AT) = lncT = hlAT = lnRT_luT_l (16)
We now maximize the 7' — 1 segment:
IH(AT_l - U'T—l) + ﬂln RT_luT_l (17)

with respect to up_q.

The first-order condition is (in the standard way equating the margin-
al utility of consumption today with § times the marginal utility of
consumption the next period times the real interest rate):

—1 n B BAr — (1 +Bur

0= Ar_1 —ur—1  ur—1 ur_1(Ar—1 —ur_1) (18)
so that
ur_1 = %ATA (19)
that is,
1
cr—1 = mATA (20)

The T — 1 value function is now:

Vr_1(Ar_1) =In <ﬁAT—1) +BIn (RT—1%AT—1>
=FmB—(1+B)In(l1+p6)+BnRr
Ut AmAr, (@)

Now maximize the T'— 2 segment with respect to up_o :

In(Ar_3 —ur_2) + B[BIn3 — (14 F)In(1+ 5) + FIn Ry
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+ (1 + 6) IH(RT,QUT,Q)]
The first-order condition yields analogously:

B +5) 1
=——* Ar sorcr o =———Ap_ 22
Ty e T R
Proceeding now to maximize the T'— 3 segment with respect to up_3
yields:

Ut —2

B+ 60+ 8)] 1

YIS S TR A AT T T TR B T AL B

Ar_3
(23)

Hence we discover that the ratio of savings to wealth starts very close
to unity, declines slowly at first, and then plunges sharply in the final
years of life. Notice that even in this simple set-up the reaction rule
is not constant, the reason being that the end-of-life constraint forces
wealth to be completely used up; in order to smooth consumption the
share of wealth consumed must rise over the lifetime (figure 11.5).

CIA, u/A A

CIA,

100 -

0.75

0.50

025+ ... u/Ay
A

T3 T2 T1 T

Figure 11.5: Consumption of wealth over lifetime

To find a constant rule requires a problem that does not change over
time; an infinite lifetime in this case. If we now change the above problem
to an infinite horizon one of maximising at ¢ = 0:

i B'nc (24)
t=0

subject to

lim AT = 0; At+1 = Ro(At — Ct) = Rout
t—— 00
This assumes that the implied one-period interest rate at t = 0, Ry,
also applied at all future dates (that is, there is a flat term structure).
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We can now guess at a constant reaction function and the corresponding
value function. Let us try for Vp the same logarithmic form as the
consumption function (since consumption will be related to wealth and
therefore welfare at T related to the log of wealth):

VT(AT) =klnAr + ko (25)

and

ur = (IAT (26)

where k, kg and a are unknown and to be found out through the method
of undetermined coefficients. To check our guess we derive the first-order
condition and then implied value function; if correct, we can solve for the
unknown coefficients when we compare these functions with our guessed
ones. Using our guess, we maximise with respect to ur the T-period
segment:

Vr(Ar) =Incr + BVri1(Ari1) (27)

where Vi1 (Ary1) must be given by (25).
We find the first-order condition of (27) as:

Bk
1+ Bk

We now substitute this into (27) and compare the result with (25):

Ar (28)

ur

Vr(Ar) =1In (TIBICAT) + Bk In(Rour) + Bko

B 1 Bk
=1In (rﬁkAT) + BkIn (ROWAT> + Bko

= Bkn Bk — (1 + k) In(1 + Bk) + BkIn Ry + (1 + 8k) In(A7) + Bko
(29)

When set equal to the guessed solution, (25), this yields our undeter-
mined coefficients as:

and

_ Bklnpk— (14 pk)In(1 + Bk) + fkIn Ry
- 5 -

ko

BInB+ (1—-083)In(1 - B) + Bln Ry
(1-0)?
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and

_ Bk _
R

Hence we have successfully found a constant rule and value function:

Vr(Ar) = ﬁlnAT + Alng+(1 _/(Bl)l_n(ﬁl); B) + Bln Ry

g

(30)

ur = BAr (31)

Cr = (]. - ﬂ)AT (32)
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APPENDIX 11B USING DYNAMIC PROGRAMMING
TO CHOOSE THE OPTIMAL MONETARY POLICY
UNDER OUTPUT PERSISTENCE

In chapter 5 we considered the issue of choosing optimal monetary pol-
icy and of time inconsistency. Because the Phillips Curve had no output
persistence, the problem could be solved using static optimization. How-
ever, suppose that the Phillips Curve exhibits persistence as follows:

Yr = pyi—1 + a(m — ) + € (1)

where 7§ is the rational expectation of inflation for ¢ formed with ¢ — 1
information; it is also under commitment the inflation rate chosen and
announced by the monetary authority.

Commitment

The set-up is that the central bank has scope to react to shocks- implic-
itly because the wage contract underlying this Phillips Curve is longer
than the publication/reaction time to the shock. Using the usual loss
function the value function under commitment is:

V(yi—1) = Max(wrtm,, 77) Ey_1{—0.5(m; — )2 = 0.5My; — y*)?
+08V(ye)} (2)

The value function form that works for the quadratic loss is also
quadratic:

V(y) =70 + 71 + 05707 (3)

Under commitment there is an additional constraint that the policy
instrument choice at ¢ — 1 is also to be rationally expected because it
will be followed through:

Ey_ymy =7y (4a)
and also
T = Et—l'/Tt + bﬁt (4b)

which uses the property of rational expectations and b is an undeter-
mined coefficient (here it will be the chosen maximising response of
monetary policy to the supply shock).
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Hence maximise
Li(={=0.5(m; — 7)* = 0.5M(ye — y*)* + BV (o) } + p(me — bey — m5)
where we have used the combined constraint of (4a) and (4b)), to obtain
the two first order conditions, the usual one in 7; and then the second

0= % respectively:
t

=7 — (X — Bya)[pys—1 + oy — F) + €] + ady* + By +p (5)

and

= a(A = By2)py—1 — ey — By o (6)
Substituting for the Lagrange multiplier, u, from (6) into (5) and
taking expectations at ¢t — 1 yields (via the commitment constraint):

B, ym=7"=my (7)

Hence (5) now yields the optimal inflation rule under commitment:

2
T = T — o (>\ 7 6’72) € (8)
1+ a?(A = Bv,)

To find the value function, one could equate (3) for lagged output
with the RHS of (2) once the optimal values of 7, and y; are substituted
in the RHS. But as we are only interested in v, in this case we can take
the first derivative of each side of (2) with respect to y;—1 and equate
these expressions (the first derivative of two sides of an equality are
equal via the ‘envelope theorem’). Differentiating the LHS of (2) yields
V1 + Yoyi—1. The RHS of (2), remembering that once optimised we take
expectations of it, is differentiated as:

PP (A= B2)ye—1 + pAy* + pBr
from which it follows, equating the LHS derivative with the RHS deriva-
tive, that:

v = 2
1+ pp
and
_ =P
V2 = 1— ﬂpg
Hence:
a\

- 1+a2/\—ﬂp26t

Notice that the supply shock response in now larger because of the
need to stabilise future output which will now be affected by the persis-
tence term.

Ty —
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Discretion

Now the problem is

Mazx(wrt 7,){—0.5(m — %)% — 0.5\ (ye — y*)? + BV (y:)} (9)

where now 7§ is simply the rational expectation of ¢-inflation formed at
t—1.
Using the same value function, the first-order condition yields:
{4 a2(A— B — a(h — )
=———— {7m"+a*(\— e — a(A —
1+O{2(A_ﬂ’y2) 72 t 72

[pyi—1 + €] +ady™ + Bay} (10)

ur

Taking expectations yields:
By amp =7 — (X = By2)[pyi—1] + aXy”" + Bay, (11)
Hence

(A = Bv,) ¢
1+ a?(A = B7,) '
=a—be —cyi—1 (12)

=71 — a(X = Bys)[pyi—1] + aXy" + Bary; —

where a, b and ¢ are implicitly defined.

Now set % = vy +79y:—1 (the derivative of the supposed value

function wrt ;1)

V(yt—1) = Br—1{-0.5(a — 7 — be; — cyi—1)* — 0.5\ (y; — y*)?
+ B0 + 71y + 057,971 (13)

where y; = py;—1 + [1 — able;
Hence

IV (y1—1)

dyr 1 =cla—7*) + pA\y* + pByy — { + P2\ = By Ywer (14)

Equating coefficients between this and the supposed value function
derivative yields:

Y1 =cla—7")+ pAy" + pBvy
and

Yo = —{ + pP*[A = Bral}
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For values where the model is well-behaved the lowest negative root
of this quadratic is relevant (see Svensson, 1997) and we obtain the
optimizing value of ¢ (and 75). This can then be substituted into the
expression for v, to yield:

_ Ay (p+a0)
L 1-8(p+a0)
The basic point is that there is an inflation bias = — ﬁ)(‘p:_aa) +Cyp_1.

Also the response to the current supply shock is excessive because the
future inflation bias also depends on today’s output; so it needs to be
stabilised more strongly. To eliminate these twin problems the mon-
etary authority must be prevented from following a (lagged) feedback
rule, since just as in the Sargent and Wallace ineffectiveness result such
a feedback component is fully anticipated by wage/price setters and im-
pounded into E;_17;. However, provided the feedback rule is off ‘current’
output, there is no bias and the optimal stabilization can be achieved;
implictly the justification for a feedback off current output is that there
are long-term contracts so that the authorities can react to events before
the wage/price setters. Hence this set-up can be considered as a simpli-
fied overlapping-contract Phillips Curve, where in effect the wage/price
setters all contract simultaneously at the start of the period.

Svensson (1997) considers ways this can also be achieved through
Walsh contracts, Rogoff ‘twisting of preferences’, altering the inflation
target and the output target. It is obvious that the Walsh contract
must be state-contingent to eliminate the lagged output element in the
inflation bias. The same is true of the output target; it must now be
equal to the ‘short-run natural rate’; py;_1.

However, altering the inflation target to be state-contingent, while
it removes the inflation bias, does not restore the optimal response to
the supply shock. Because it introduces a remainder term (the square
of output appears now additionally because it enters the inflation tar-
get) into the utility function, it leads to an over-strong response to the
shock, over-stabilising output. In this case the ‘intriguing’ result occurs
that if the authority is made more ‘weight-conservative’ together with
a state-contingent inflation target, the conservativeness can offset this
over-reaction, so that the optimal result is restored.

The basic point remains that in practice the central bank must be
induced to react only to current shocks and not to lagged information al-
ready incorporated into people’s contract decisions. This does in practice
then require a decision on the relevant length of the ‘current’ period; new
information arriving within this period should be reacted to, previous
not. On the logic of long-term contracts overturning the Sargent-Wallace
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result (Minford and Peel, 2001), this should be the longest period for
which nominal contracts are written.



